How to Improve Data Labeling efficiency with Auto-Labeling, Uncertainty Estimations, and Active Learning
In this whitepaper, we dive into the machine learning theory and techniques that were developed to evaluate our auto-labeling AI. More specifically, how the platform estimates the uncertainty of auto-labeled annotations and applies it to active learning. This whitepaper will help you measure and evaluate how much you can trust the model output when utilizing auto labeling for data annotation.
Recent Posts
Product
Subscribe to our newsletter
Stay updated on the latest computer vision news and product releases